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Abstract

The Ethereum Virtual Machine (EVM) relies on secure digital signatures in order to
authenticate transactions. Today, these are implemented using elliptic curve cryptography.
Quantum computers, and more precisely Shor’s algorithm, threaten the integrity of elliptic
curve digital signatures and thus endanger the security of the EVM. National security
agencies advise the move to post quantum cryptography standards and schemes. We
propose a modification to the EVM transaction types. Specifically, we introduce a new
transaction type which in addition to the elliptic curve signature includes a post-quantum
signature (deterministic CRYSTALS-Dilithium Level 2), together with the hash of both
signatures. This enables quantum resistant digital signatures whilst preserving the speed
and efficiency of the EVM.

1 Introduction

Classical cryptography relies on mathematical problems which current, classical computers
cannot solve in order to achieve secure communication between various parties in presence of
malicious adversaries. Its application to distributed networks via Transport Layer Security
(TLS) has allowed for the development of the secure internet. More broadly, it underpins
much of modern technology such as the TLS protocol, SSH and more. These rely on public
key cryptography, which enables the generation of two keys, termed a public and a private key
for communication. Examples of such schemes are Rivest–Shamir–Adleman (RSA) [1], and
schemes based on elliptic curves (EC) [2], e.g. Elliptic-curve Diffie–Hellman (ECDH).

Yet, quantum computers are known to pose a serious and critical threat to cryptographic
protocols and thus to the security of systems currently widely used [3]. A quantum computer
is a computational device exploiting the laws of quantum physics, as opposed to classical
physics. These have been subject of research for the past three decades and constitute an
area of active research and development [4]. In 1981, Richard Feynman suggested harnessing
quantum physics in order to simulate quantum systems [5]. Indeed, these are systems whose
complexity is such that computing their properties on current classical computers is as yet
intractable. Instead, the idea was to build devices with quantum systems as their building
blocks in order to natively simulate the system of interest. Over the next decade, this idea
was formalized until, in 1994, Shor’s factorization algorithm provided an efficient Fourier
transform [6]. This development meant that both RSA and EC cryptosystems were no longer
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secure, and that given access to a quantum computer, these could be compromised. Given
their central role in cryptography, this would be a cryptographic nightmare.

Currently, no quantum computer capable of compromising internet security is available.
Indeed, building a quantum computer is not a straightforward task. In 2001, 5 qubits could
factor the number 15 [7]. Since then, academic institutions, established companies and start-
ups seek to develop a quantum computer capable of producing meaningful output. Today,
qubit counts of 127, 128 and 80 have been achieved respectively by IBM [8], MIT [9] and
Rigetti [10]. In contrast, 20 million noisy qubits would be required for Shor’s factorization
algorithm to be applied to meaningful problem instances [11, 12].

Nonetheless, the critical role of both RSA and EC cryptography means that both govern-
ments and companies are actively looking for new standards. Post-quantum (PQ) cryptogra-
phy refers to classical cryptography for which no efficient quantum algorithms have (as yet)
been devised. The National Institute of Standards and Technology (NIST) has recognised
the need for new standards of public key cryptography, and has launched a competition for
the development of new post-quantum cryptography standards [13]. The competition has
proceeded in rounds, yielding candidates for both key exchange algorithms and digital sig-
natures. More generally, security agencies are calling for enterprises and organisations that
develop and implement cryptographic products to prepare for migration to PQ standards [14,
15, 16].

A digital signature scheme is a fundamental cryptographic primitive that is used to protect
authenticity and integrity of communication and fulfills a role akin to physical signatures. A
pair of keys — one private and one public — is generated: the private (signing) key is used
to sign the document, whereas the public key is available to anyone wishing to verify the sig-
nature and ascertain the author of the message. Traditionally, the public key is linked to the
identity of the signer via certificates and their authenticity is guaranteed by a certificate au-
thority, which must be trusted. In contrast, in a decentralised setting, such as for blockchains
in general and EVM in particular, there is no trusted certificate authority that would link
individual identities to the corresponding public keys. Instead, a public key is connected to
the source address of a transaction via a hash (see Section 2.1.2 for details), thus providing
a trustless proof of authenticity. In the case of EVM, the signature scheme (ECDSA) is used
in a way that allows recovering the public key from the signature itself. This in turn allows
the computation of the originating address of a transaction. The ownership of the funds at
an address is thus linked directly to the ability to produce valid signatures for that address.

A digital signature scheme has five parameters that are relevant for the implementation:
signature size, public key size, private key size, signature generation time and signature veri-
fication time. Ideally, novel post-quantum encryption standards would seamlessly (or almost)
replace current standards, thereby minimising any disruption. However, the current candi-
dates for post-quantum digital signatures suffer from trade-offs in terms of public/private key
size, signature size, signature time and verification time, as summarised in Table 1. Depending
on the context used, this could cause a significant issue.

The EVM currently implements digital signatures using an EC cryptography scheme, and
as such, is vulnerable to quantum threat. Indeed, an attacker with access to a quantum
computer could break the digital signature and impersonate someone, and thus for example
drain funds. In the context of the EVM, the signature size must be small as every transaction
must include it, whereas the verification must be fast as signatures are verified by nodes on
the network. Hence, developing PQ digital signature schemes is an important and active area
of current research (e.g. BPQS [18] is a patented scheme based on hashes of digital signatures
and one-time signatures).

The remainder of the paper presents an update to the Ethereum transaction types. Its pur-
pose is to upgrade the EVM to PQ signatures whilst preserving its efficiency. Section 2 gives
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Name Signature size Public/Private Verification Signature
key size time time

NIST P-256 64 64/32 1 1
RSA-2048 256 512/256 0.2 25
Dilithium2 1320 2420/2272 0.3 2.5
Falcon512 897 666/1280 0.3 5
Rainbow I 66 157800/101200 0.1 2.4
SPHINCS+-128s 7856 32/64 1.7 3000
Picnic-L1-full 32061 34/17 21 60
GeMMS128 33 352190/13440 21 60

Table 1: Comparison of current digital signature schemes and NIST PQ candidates, [17]. The sizes are in
bytes. Both signature and verification time are relative to NIST P-256, an Elliptic Curve Digital Signature
Algorithm (ECDSA) with prime curve P-256. For RSA, the public exponent in practice needs only 3 bytes
but could be as big as the modulus itself. We consider Level 1 and Level 2 parameters for the PQ schemes as
these correspond to the classical security level of the NIST P-256 curve.

an overview of the existing EVM system. Section 3 introduces a new transaction type which
in addition to the ECDSA signature includes a PQ signature (deterministic CRYSTALS-
Dilithium Level 2 [19, 20]), together with the hash of both signatures. This hybrid approach
is in line with suggested mandatory practices put forth by government agencies [16]. It fur-
thermore enables a smooth transition, is backward compatible and ensures stronger security,
as PQ signatures have not been scrutinised as much as their classical counterparts. Trans-
actions of type 1, as introduced in Ethereum Improvement Proposal (EIP) 2930 [21] are
further extended (note that legacy transactions are not considered, but could be if EIP-2930
is not widely adopted). This scheme allows an upgrade of the EVM to PQ digital signatures.
Section 4 outlines the next steps.

2 Status Quo

In this section, the current EVM system is reviewed, with a focus on transaction types,
representations, and crucially how these are signed and stored. Additionally, a summary of
the current discussion on Ethereum Magicians’ forum (a forum for the crypto community to
discuss EIPs and technical difficulties of Ethereum ecosystem) and potentially related EIPs1

is included.

2.1 Overview of EVM

This section is a short summary of the Ethereum Yellow Paper [22], introducing the notation
that is relevant to the proposal. Throughout the proposal, bold symbols (e.g. T) represent
variables that can hold sets, lists, vectors, whereas the non-bold symbols represent scalar
values or single objects. When a variable appears as an index of some other variable (e.g. Tx)),
it represents the corresponding property of the object (in the example given, the type of the
transaction). The length of a list or the size of a set is denoted by ∥ · ∥ (e.g. since BT

denotes the transactions in block B, ∥BT∥ is the number of transactions in block B). The
concatenation of byte arrays is denoted by a dot (·). The encoding of an arbitrary object
x is denoted by RLP(x) and is done using the recursive length prefix encoding, as defined in

1Ethereum Improvement Protocol
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Appendix B of the Ethereum Yellow Paper.
Ethereum, taken as a whole, can be viewed as a transaction-based state machine: we begin

with a genesis state and incrementally execute transactions to morph it into some current
state. A valid state transition is one which comes about through a transaction. Formally

σt+1 ≡ Υ(σt, T ),

where Υ is the Ethereum state transition function that allows components to carry out ar-
bitrary computation, T is a transaction, while σ allows components to store arbitrary state
between transactions (σt corresponds to the state of the system after t successive transactions
and σ0 is the genesis state). Transactions are collated into blocks; blocks are chained together
using a cryptographic hash as a means of reference.

2.1.1 Transactions

A transaction (formally, T ) is a single cryptographically-signed instruction constructed by an
actor externally to the scope of Ethereum. The sender of a transaction cannot be a contract.
EIP-2718 [23] introduced the notion of different transaction types. As of the Berlin version
of the protocol, there are two transaction types: 0 (legacy) and 1 (EIP-2930 [21]). Further,
there are two subtypes of transactions: those which result in message calls and those which
result in the creation of new accounts with associated code (known informally as ‘contract
creation’). All transaction types specify a number of common fields:

• type: EIP-2718 transaction type; formally Tx.

• nonce: A scalar value equal to the number of transactions sent by the sender; formally
Tn.

• gasPrice: A scalar value equal to the number of Wei to be paid per unit of gas for all
computation costs incurred as a result of the execution of this transaction; formally Tp.

• gasLimit: A scalar value equal to the maximum amount of gas that should be used in
executing this transaction. This is paid up-front, before any computation is done and
may not be increased later; formally Tg.

• to: The 160-bit address of the message call’s recipient or, for a contract creation trans-
action, ∅, used here to denote the byte string of length 0; formally Tt.

• value: A scalar value equal to the number of Wei to be transferred to the message call’s
recipient or, in the case of contract creation, as an endowment to the newly created
account; formally Tv.

• r, s: Values corresponding to the signature of the transaction and used to determine
the sender of the transaction; formally Tr and Ts. See Appendix A for the definition.

EIP-2930 (type 1) transactions also have

• accessList: List of access entries to warm up (i.e. make readily accessible for the
computation when executing the transaction); formally TA. Each access list entry E is
a tuple of an account address and a list of storage keys: E ≡ (Ea, Es).

• chainId: Chain ID; formally Tc. Must be equal to the network chain ID β.
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• yParity: Signature Y parity; formally Ty. Recall that in an ECDSA signature, r is
the X-coordinate of a point. To reconstruct the public key from the signature, the Y-
coordinate is also needed. Since the equation of the curve is known, the parity of the
Y-coordinate is enough to recover Y.

Legacy transactions do not have an accessList (TA = ()), while chainId and yParity
for legacy transactions are combined into a single value

• w: A scalar value encoding Y parity and possibly chain ID; formally Tw. Tw = 27 + Ty

or Tw = 2β + 35 + Ty (see EIP-155 [24]).

Additionally, contract creation transactions contain

• init: An unlimited size byte array specifying the EVM-code for the account initialisation
procedure; formally Ti.

In contrast, a message call transaction contains

• data: An unlimited size byte array specifying the input data of the message call; for-
mally Td.

A given transaction T can thus be represented as

LT(T ) =

{ [
Tn, Tp, Tg, Tt, Tv,p, Tw, Tr, Ts

]
if Tx = 0,[

Tc, Tn, Tp, Tg, Tt, Tv,p, TA, Ty, Tr, Ts

]
if Tx = 1,

(1)

where

p =

{
Ti if Tt = ∅,
Td otherwise.

(2)

2.1.2 Signing transactions

Transactions are signed using recoverable ECDSA signatures, using the elliptic curve SECP-
256k1. It is assumed that the sender has a valid private key pr, which is a randomly se-
lected positive integer (represented as a byte array of length 32 in big-endian form) in the
range [1, secp256k1n − 1]. We furthermore assume the existence of functions ECDSAPUBKEY,
ECDSASIGN and ECDSARECOVER

ECDSAPUBKEY(pr) → pu, (3)

ECDSASIGN(e, pr) → (v, r, s), (4)

ECDSARECOVER(e, v, r, s) → pu, (5)

where pu is the public key, e is the hash h(T ) of the transaction (defined below), v is the
recovery identifier (i.e. the Y parity from above). See Appendix A for the definition of these
three functions.

For a given private key pr, the corresponding Ethereum address A(pr) (a 160-bit value) is
defined as the rightmost 160-bits of the Keccak-256 hash of the corresponding ECDSA public
key

A(pr) = KEC (ECDSAPUBKEY(pr))96...255 . (6)

The message hash, h(T ), to be signed is the Keccak-256 hash of the transaction. As not
all of the transaction fields get hashed, we introduce the function LX that depends on the
transaction type and returns the fields to hash:
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LX(T ) =


(Tn, Tp, Tg, Tt, Tv,p) if Tx = 0 and Tw ∈ {27, 28},
(Tn, Tp, Tg, Tt, Tv,p, β, (), ()) if Tx = 0 and Tw ∈ {2β + 35, 2β + 36},
(Tc, Tn, Tp, Tg, Tt, Tv,p, TA) if Tx = 1,

(7)

With the help of this function we can define the hash of the transaction as

h(T ) =

{
KEC(RLP(LX(T ))) if Tx = 0,
KEC(Tx · RLP(LX(T ))) if Tx = 1.

(8)

The signed transaction G(T, pr) is the same as the transaction T itself, except with three
fields updated as

(Ty, Tr, Ts) = ECDSASIGN(h(T ), pr). (9)

Note that the public key does not need to be included in the transaction as it can be recovered
from the signature.

2.1.3 Blocks

The block in EVM consists of three components:

• a collection of relevant pieces of information (known as the block header), H,

• information corresponding to the comprised transactions, T, and

• a set of other block headers U that are known to have a parent identical to the present
block’s parent’s parent (such blocks are known as ommers).

The block header of a block B is denoted by BH. The other two components in the block
are simply a list of ommer block headers, denoted by BU and a series of the transactions,
denoted by BT.

The block header contains several pieces of information. For this proposal, the only
relevant part is transactionsRoot, the Keccak 256-bit hash of the root node of the trie2

structure populated with each transaction in the transaction list portion of the block; formally
Ht, defined as

Ht = TRIE({pT(k,BT[k] : k = 0, 1, . . . , ∥BT∥ − 1}), (10)

where

pT(k, T ) =

{ (
RLP(k), RLP(LT(T ))

)
, if Tx = 0,(

RLP(k), (Tx) · RLP(LT(T ))
)
, if Tx = 1.

(11)

Formally, the block B can be referred to as

B ≡ (BH, BT, BU) (12)

and its serialisation is
LB(B) =

(
LH(BH), L̃

∗
T(BT), L

∗
H(BU)

)
, (13)

where

L̃T(T ) =

{
LT(T ) if Tx = 0,

(Tx) · RLP(LT(T )) if Tx = 1,
(14)

2A trie is a modified Merkle Patricia tree, see Appendix D in the Ethereum Yellow Paper [22].
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and the star ∗ denotes that the transformation is applied to each element of the list. The
definition of LH is identical to the definition in [22] and is not repeated here as it is not
affected by this proposal.

A block is valid if and only if it satisfies several conditions: it must be internally consistent
with the ommer and transaction block hashes and the given transactions BT, when executed
in order on the base state σ (derived from the final state of the parent block), result in a
new state as represented in the block header. It is assumed that any transactions that get
executed first pass the initial tests of intrinsic validity. These include:

1. The transaction is well-formed RLP, with no additional trailing bytes;

2. the transaction signature is valid;

3. the transaction nonce is valid (equivalent to the sender account’s current nonce);

4. the sender account has no contract code deployed;

5. the gas limit is no smaller than the intrinsic gas, g0, used by the transaction; and

6. the sender account balance contains at least the cost, v0, required in up-front payment.

For this proposal, only the meaning of point 2 needs to be changed.

2.2 Existing Proposals

2.2.1 Magician’s forum posts

A search for quantum yields results hinting at the necessity of implementing PQ signatures,
without offering any concrete solution.

The question of allowing users freedom in choosing their signatures has been discussed [25],
illustrating that the community is aware of the importance to upgrade to PQ signatures. Yet,
no concrete proposal was found. The current consensus seems to rely on NIST yielding a
replacement with similar time and storage requirements. One approach to this is to introduce
account abstraction to the EVM [26, 27]. The current system requires users to have an
externally owned account (EOA), which allows for a specific transaction and signature type.
In contrast, account abstraction would use smart contract wallets to store funds, thereby
allowing for increased types of both transaction [28] and signatures to be used. However,
implementing the contract wallets in a way that guarantees security is a non-trivial task
and could potentially lead to security issues for other smart contracts since the assumptions
on the caller are no longer identical across all possible contract wallets (as opposed to the
EOAs, where the only assumption is that the caller is in the possession of the private key that
corresponds to the account address).

Alternatively, ZK-STARKs [29] are known to be quantum resistant, and thus offer po-
tential to be used for post quantum cryptography [30]. Nevertheless, they are not a drop-
in replacement for ECDSA. Instead, the correctness of the state transition between blocks
would be verifiable using this scheme, with potentially lower complexity than re-running all
the transactions by each validator separately.

The last result [31] proposes to increase the address size, however, that does not address
the problem of quantum computers breaking the ECDSA signatures.
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2.2.2 Related EIPs

The EIPs mentioning the word quantum in a relevant sense are: EIP-101 [32], EIP-1011 [33],
EIP-2333 [34], EIP-2938 [35] and EIP-4844 [36]. Of these, EIP-2333 introduces a key deriva-
tion scheme for BLS signatures with a Lamport signature as a one-off backup, and EIP-101,
EIP-1011 and EIP-2938 introduce various versions of account abstraction. None offer a con-
crete solution to the quantum threat. EIP-4844 introduces a way of including additional data
into transactions which does not get added to the blockchain. The proposal does not mention
post-quantum signatures, and instead discusses using versioned hashes that allow moving to a
new version without having to break the compatibility on the chain (and mentions quantum-
safety as one of the reasons for moving to a new version). The idea of having some data as
part of the transaction that gets later discarded is similar to our proposal.

3 PQ Proposal

In this section, the quantum resistant proposal is presented, introducing a new transaction
type requiring both an ECDSA signature as well as a PQ signature and discussing the signing
and storage of transactions. Secondly, the required code modifications are discussed as well
as a fallback scheme, and a comparison of both resources.

3.1 Proposal

Current guidelines for industry from national security agencies suggest adopting a hybrid
approach to public key cryptography, that is, new schemes encompassing both a classical
scheme such as ECDSA and RSA, as well as an algorithm believed to be quantum resistant.
Given the increase in resource requirements of quantum schemes, the additional cost of a
hybrid scheme is relatively low whilst guaranteeing security at least as good as today.

From Table 1 it follows that most PQ digital signature schemes are not appropriate for
EVM due to the large signatures or keys or long signature and verification times. The only
two schemes that offer reasonable size and performance are Dilithium2 and Falcon512. For
this proposal we choose Dilithium2, specifically, deterministic CRYSTALS-Dilithium Level 2
signature scheme (dCDL2) [19, 20]. dCDL2 is chosen over Falcon as it is easier to correctly
implement and is less susceptible to side channel attacks [37].

We introduce a new transaction type ’Q’ (decimal 81, hexadecimal 0x51) that includes
an ECDSA signature and a PQ signature. Transactions of this type have several additional
fields in comparison to type 1 transactions. First, it contains fields related to the PQ signature
scheme i.e. to the dCDL2 signature:

• pqSignC, pqSignZ, pqSignH: Values corresponding to the dCDL2 signature of the
transaction; formally Tqc, Tqz and Tqh,

and to the dCDL2 public key:

• pqKeyRho, pqKeyT: The public key for dCDL2; formally Tqr and Tqt.

Second, a joint hash of the ECDSA and dCDL2 signatures that allows for a compact storage
of the transactions within the blocks:

• signHash: The hash of the ECDSA and dCDL2 signature; formally Th,

where signature hash Th for a type 81 transaction is computed as

Th = KEC(RLP((Ty, Tr, Ts, Tqc, Tqz, Tqh))). (15)
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3.1.1 Transaction representation for submission and storage

We modify the representation equ. (1) of a transaction as used to store the transaction in a
block by adding a new case corresponding to the post-quantum (i.e. Tx = 81) case:

LT(T ) =


[
Tn, Tp, Tg, Tt, Tv,p, Tw, Tr, Ts

]
if Tx = 0,[

Tc, Tn, Tp, Tg, Tt, Tv,p, TA, Ty, Tr, Ts

]
if Tx = 1,[

Tc, Tn, Tp, Tg, Tt, Tv,p, TA, Ty, Tr, Ts, Th

]
if Tx = 81.

(16)

Note that the difference between type 1 and type 81 transactions is the addition of a single
32 byte field Th.

The definition of the function LX(T ) in equ. (7), representing the transaction data that
gets signed, is expanded to cover the case Tx = 81

LX(T ) =


(Tn, Tp, Tg, Tt, Tv,p) if Tx = 0 and Tw ∈ {27, 28},
(Tn, Tp, Tg, Tt, Tv,p, β, (), ()) if Tx = 0 and Tw ∈ {2β + 35, 2β + 36},
(Tc, Tn, Tp, Tg, Tt, Tv,p, TA) if Tx ∈ {1, 81}.

(17)

We introduce a new function LQ(T ) that encodes the transaction for submission to the
network

LQ(T ) =

{
LT(T ) if Tx ∈ {0, 1},

LT(T ) ·
[
Tqc, Tqz, Tqh, Tqr, Tqt

]
if Tx = 81.

(18)

Observe that the transaction submitted to the network is identical to the one later stored
within the block for type 0 and type 1 transactions, but differs for type 81: the submitted
transaction additionally includes the dCDL2 signature and the public key

(Tqc, Tqz, Tqh, Tqr, Tqt). (19)

Since ECDSA signatures have a recoverable public key property, the ECDSA signature itself
is enough to derive the sender’s address. For the dCDL2 signatures, the public key cannot be
derived from the signature itself. Therefore transactions of type 81 have to include the public
key as well as the signature when submitted to the network. The reason for not including
these fields when storing the transactions in blocks is their total size and is explained in detail
in section 3.4.

We assume the existence of functions PQCDPUBKEY and PQCDSIGN

PQCDPUBKEY(pζ) → (pρ, pt1), (20)

PQCDSIGN(e, pζ) → (c̃, z,h), (21)

where (pρ, pt1) is the dCDL2 public key, pζ is the dCDL2 private key, e is the hash h(T ) of the
transaction (as defined in equ. (8)). See Appendix B for the definition of these functions. We
define functions PUBKEY, SIGN and RECOVER as a combination of the corresponding ECDSA
and dCDL2 functions:

PUBKEY(pr, pζ) → (ECDSAPUBKEY(pr), PQCDPUBKEY(pζ)), (22)

SIGN(e, pr, pζ) → (ECDSASIGN(e, pr), PQCDSIGN(e, pζ)), (23)

RECOVER(e, v, r, s, pρ, pt1) → (ECDSARECOVER(e, v, r, s), (pρ, pt1)). (24)
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For a given hybrid private key (pr, pζ), the corresponding post-quantum-Ethereum address,
denoted by A(pr, pζ) (a 160-bit value), is defined as the rightmost 160-bits of the Keccak-256
hash of the corresponding hybrid public key:

A(pr, pζ) = KEC (PUBKEY(pr, pζ))96...255 . (25)

We redefine the signed transaction G(T, (pr, pζ)) as the transaction T with six fields up-
dated as

((Ty, Tr, Ts), (Tqc, Tqz, Tqh)) = SIGN(h(T ), pr, pζ). (26)

3.1.2 Storage rationale

The additional transaction information in equ. (19) can be held until the finality is reached
(e.g., 6-10 blocks). After that, only the signHash data is stored on the blockchain in addition
to the data that is stored for transactions of type 0 or 1.

This saves space (as the dCDL2 signature and public key are significantly larger than
the ECDSA signature) and offers the same level of security as the transactions cannot be
modified due to the chaining of the block hashes. This is equivalent to the fact that revealing
the private key of some past transaction cannot be used to revert that transaction, so the
signature itself does not need to be stored permanently (it is only needed to validate the
transaction before it is included in a block). Furthermore, since dCDL2 is the deterministic
version of the CRYSTALS-Dilithium signature scheme, the owner of the corresponding private
key can always reproduce the signature for an older transaction, thus reconstructing the whole
transaction information LQ(T ) sent to the network, based only on the information stored on
the blockchain. Due to this property, the legitimate sender can always prove the validity of a
past transaction.

3.2 Code Modifications

In order to support the new transaction type, the EVM code as well as the client code must
be updated. On the EVM side, the second initial test of intrinsic validity of a transaction has
to be updated to take both ECDSA signature as well as the dCDL2 signature into account.
In addition, the signHash field Th has to be validated. The serialisation of the transactions
for the inclusion into the Merkle tree also has to be done as described in equ. (16).

The clients (wallets) need to be able to submit the new transaction type. In particular,
they must implement function LQ(T ) as defined by equ. (18) and the PQ signature algorithm
CRYSTALS-Dilithium Level 2. In addition, they have to be able to compute the new address
as defined in equ. (25).

Due to the difference between the submitted transaction data LQ(T ) and the stored trans-
action data LT(T ), the full nodes need a way of discarding the extra information (19) that
is present in LQ(T ), as soon as a transaction is considered confirmed. The extra information
cannot be discarded earlier as the transaction might need to be included in some later block
in case of reorder. This pruning of the information can be done automatically as new blocks
are added (e.g. pruning the blocks that are at block height− 10) or periodically as a form
of garbage collection (e.g. daily).

3.3 Fallback

The scheme allows for a fall-back: if a client does not support the new transaction scheme, it
can submit the classical transaction with just the ECDSA signature, i.e. LT(T ) as defined in
equ. (16) for types 0 and 1. It will be up to the full nodes to decide how long they want to
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accept these transactions. Since there is no way of checking whether an address is a new or
an old type of address (for the system it plays no role - the sender’s address of a transaction
must be computable from the public keys that are associated with (one or two) signatures),
there is no way of forcing the users to use the new addresses. Because the old addresses
are not associated with the PQ keys, those will always have to be performed with just an
ECDSA signature. However, a decision could be made that new transactions have to go to
new addresses and so transfer of funds from the addresses that were created after a certain
date (e.g. 2023-01-01) must include an ECDSA and a dCDL2 signature. In other words: any
address that was created after the cutoff date can only appear as the sender in transactions
of type 81.

3.4 Resource comparison

Introducing the new transaction type will have an impact on the space requirements for storing
the additional transaction information and block processing time for miners and validators
when validating new transactions.

Let N denote the non-negative integers and B byte sequences of arbitrary length. Let

Nk = {n ∈ N : n < 2k} and Bk = {x ∈ B : ∥x∥ = k}. (27)

Transaction size. For transactions of type 0 or 1, we have

Tx, Ty ∈ {0, 1};Tc = β ∈ N256;Tn, Tp, Tg, Tv, Tw, Tr, Ts ∈ N256;Tt ∈ B20, Ti, Td ∈ B. (28)

Since all the data in a transaction gets encoded using the RLP-encoding, the encoded objects
are only slightly bigger. For the purpose of estimating the size of a typical transaction, we can
assume that each of the quantities takes 32 bytes of space, except for Tx and Ty, which are
one byte each, Tt, which is 20 bytes and the arbitrary length fields Ti, Td and TA. Assuming
that a typical transaction is not a contract creation transaction, that Td contains four 32-byte
parameters and that TA is empty, we obtain a transaction size of about 400 bytes. This
matches well with the observed average transactions sizes on etherscan.io. The ECDSA
signature on the SECP-256k1 curve has size 64 bytes and thus represents 16% of the total
transaction size on average.

The proposed dCDL2 signature is 21 times larger than an ECDSA signature. The public
key of the dCDL2 signature is 38 times larger than an ECDSA signature. Since the dCDL2
signature does not allow public key recovery, the public key must also be included in the
transaction. This roughly corresponds to the addition of PQ signature components about sixty
times greater than the current signature components (i.e. 3740 bytes), resulting in transactions
that have on average 4140 bytes. The signatures and the PQ public key represent 92% of the
transaction size.

Since the PQ signature and the corresponding public key do not get stored to the block
chain and we only store an additional hash value of the two signatures, the increase in size of
the stored data is about 8% for a typical transaction. Thus, given cryptographically relevant
quantum computers, adding PQ signatures significantly improves the security of the EVM-
based block chains, and so it can be argued that this increase in transaction size is acceptable
given today’s hardware capacities.

Signature time. The dCDL2 signature takes 2.5-times longer than a current ECDSA signa-
ture. As the two signature computations are independent, they can be performed in parallel.
The transaction is signed by the user before being submitted. Furthermore, once submitted,
there is a delay in the network as the user must wait for their transaction to be included in
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the block. Since the average block time for Ethereum is about 13 seconds, the additional time
needed to compute the dCDL2 signature is negligible compared to the network delay.

Verification time. The verification time for a dCDL2 signature is 0.3 times the time for
the ECDSA verification. Since the two verifications are independent of each other and can
be performed in parallel, there is no delay in verifying the additional signature. Moreover,
verifying the signature is a minor part of checking the validity of a transaction, so even the
computational overhead is negligible.

4 Conclusion

The PQ-EVM proposes an efficient and simple solution to the quantum threat for the EVM
via the addition of a PQ signature. Recall that n-bit classical (quantum) security means
that it would take a classical (quantum) computer 2n operations to break. Currently, 80-bit
security is considered safe. ECDSA using the SECP-256k1 curve has 128-bit classical security
and about 30-bit quantum security, i.e. it is not quantum resistant. In contrast, dCDL2 has
123-bit classical security and 112-bit quantum security, and is thus considered safe in the
presence of both classical and quantum computers.
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A ECDSA signatures

This appendix describes the ECDSA signature scheme as used in EVM. Note that the de-
scription of the signature and verification steps below omits some of the checks that need to
be performed, in order to ensure that the signature is secure. These checks have been omitted
here for clarity. Full description, including the omitted checks, can be found in [38, 39].

Let C be the elliptic curve SECP-256k1 defined by the equation

y2 = x3 + 7, (29)

over the finite field Fp with

p = 115792089237316195423570985008687907853269984665640564039457584007908834671663

= 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1.

The group of points on this elliptic curve is cyclic of order secp256k1n = n with

n = 115792089237316195423570985008687907852837564279074904382605163141518161494337.
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Let G be a generator of this group, defined as

G = (55066263022277343669578718895168534326250603453777594175500187360389116729240,

32670510020758816978083085130507043184471273380659243275938904335757337482424).

Next, we define three functions ECDSAPUBKEY, ECDSASIGN and ECDSARECOVER, for respec-
tively key generation, signing and public key recovery.

Key generation. The sender generates the private key pr by randomly selecting a pos-
itive integer (represented as a byte array of length 32 in big-endian form) in the range
[1, secp256k1n− 1]. The function ECDSAPUBKEY is defined as

ECDSAPUBKEY(pr) = pu = prG,

where pu denotes the public key.

Signing. To sign a message m whose hash is e, an entity A with the private key pr proceeds
as follows:

1. Select a random or pseudorandom integer k, 1 ⩽ k ⩽ n− 1.

2. Compute kG = (x1, y1) and interpret x1 as an integer.

3. Let v = y1 mod 2.

4. Compute r = x1 mod n.

5. Compute k−1 mod n.

6. Interpret e as an integer and compute s = k−1(e+ prr) mod n.

7. A’s signature for the message m is (v, r, s) = ECDSASIGN(e, pr).

Public key recovery. To recover the public key pu from the signature data (e, v, r, s),
proceed as follows:

1. Using r and v, recover the point R = kG = (x1, y1) by setting x1 = r and solving the
elliptic curve equ. (29) for y1, using v to determine which of the two possible values is
correct.3

2. Compute r−1 mod n.

3. Compute pu = ECDSARECOVER(e, v, r, s) = r−1(sR− eG).

To verify A’s signature (v, r, s) on message m with hash e, perform the following:

1. Verify that r and s are integers in the interval [1, n− 1].

2. Recover the public key of A via pu = ECDSARECOVER(e, v, r, s).

3. Compute w = s−1 mod n.

4. Compute u1 = ew mod n, u2 = rw mod n.

5. Compute X = u1G+ u2pu.

6. Interpret the x-coordinate x1 of X as an integer and compute z = x1 mod n.

7. Accept the signature if and only if z = r.
3Note that the value of k cannot be recovered.
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B dCDL2 signatures

This appendix describes the dCDL2 signature scheme as used in this paper. Note that the
description of the signature and verification steps below involves functions that are defined
in [20] but are not repeated here for simplicity. The pseudo-code also does not describe the
optimisations that can be performed to speed up the operations. The descriptions are taken
from Figure 4 in [20], with explicit parameter values as defined for CRYSTALS-Dilithium
Level 2.

Let H denote the SHAKE-256 extendable output function. Specifically, H(M,d) generates
an output of length d bits from a message M .

Let q = 8380417 = 223 − 213 + 1 (a prime number) and let Rq be the polynomial ring
Zq[X]/(X256 + 1). For an element a ∈ Zq we define ∥a∥∞ as

∥a∥∞ = |a mod ±q|,

where a mod ±q is the unique element a′ in the range − q
2 < a′ ⩽ q

2 . Similarly, for a polynomial
p = a0 + a1X + · · ·+ an−1X

n−1 ∈ Rq we define

∥p∥∞ = max
i

∥ai∥∞.

Furthermore, let

Sη = {w ∈ Rq : ∥w∥∞ ⩽ η}, (30)

S̃η = {w mod ±2η : w ∈ Rq}. (31)

Note that the sets Sη and S̃η are very similar, except that S̃η does not contain any polynomials
with −η coefficients. Let Bτ denote the set of elements of Rq that have τ coefficients that are
either -1 or 1 and the rest are 0.

Next, we define functions PQCDPUBKEY, PQCDSECKEY and PQCDSIGN, for respectively pub-
lic/private key generation and signing.

Key generation. The sender generates the keys by first randomly selecting a 256-bit number
pζ ∈ B32 and then expanding it using H to generate the various components of the actual
private key:

1. Randomly select pζ ∈ B32.

2. (ρ, ρ′,K) = H(pζ , 1024) ∈ B32 × B64 × B32.

3. Let A = ExpandA(ρ) ∈ R4×4
q .

4. Let (s1, s2) = ExpandS(ρ′) ∈ S4
2 × S4

2 .

5. Compute t = As1 + s2.

6. (t0, t1) = Power2Roundq(t, 13).

7. tr = H(ρ · t1, 256) ∈ B32, where · denotes the concatenation of the byte arrays.

8. The public key is (pρ, pt1) = (ρ, t1) = PQCDPUBKEY(pζ), the expanded private key is
sk = (ρ,K, tr , s1, s2, t0) = PQCDSECKEY(pζ).

Signing. To sign a message m with hash e, an entity A with the private key pζ proceeds as
follows:
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1. Compute the expanded private key sk = PQCDSECKEY(pζ).

2. Let A = ExpandA(ρ) ∈ R4×4
q .

3. Compute µ = H(tr · e, 512) ∈ B64.

4. Let κ = 0, (z,h) = ⊥.

5. Compute ρ′ = H(K · µ, 512) ∈ B64 (Note: this makes the signature deterministic).

6. While (z,h) = ⊥, repeat steps 6a – 6g:

(a) Let y = ExpandMask(ρ′, κ) ∈ S̃4
131072.

(b) Compute w = Ay.

(c) Let w1 = HighBits(w, 190464).

(d) Let c̃ = H(µ ·w1, 256) ∈ B32 and c = SampleInBall(c̃) ∈ B39.

(e) Compute z = y + cs1 and r0 = LowBitsq(w − xs2, 190464).

(f) If ∥z∥∞ ⩾ 130994 or ∥r0∥∞ ⩾ 95154, then (z,h) = ⊥, else
compute h = MakeHintq(−ct0,w − cs2 + ct0, 190464). If now ∥ct0∥∞ ⩾ 95232 or
the number of 1’s in h is greater than 80, set (z,h) = ⊥.

(g) Let κ = κ+ 4.

7. A’s signature for the message m is (c̃, z,h) = PQCDSIGN(e, pζ).

To verify A’s signature (c̃, z,h) on message m with hash e using the public key (pρ, pt1),
perform the following:

1. Generate A = ExpandA(pρ) ∈ R4×4
q

2. Compute µ = H(H(pρ · pt1 , 256) · e, 512) ∈ B64.

3. Compute c = SampleInBall(c̃) ∈ B39 and w′
1 = UseHintq(h,Az− 8192ct1, 190464).

4. Accept the signature if ∥z∥∞ < 130994 and c̃ = H(µ ·w′
1, 256) and the number of 1’s in

h is at most 80.
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